Thrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis
نویسندگان
چکیده
Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, we review the serine proteases thrombin and elastase relative to dressing functionality that improves wound healing and examine the effects of charge in cotton/cellulosic dressing design on thrombin production and elastase sequestration (uptake by the wound dressing). Thrombin is central to the initiation and propagation of coagulation, and elastase is released from neutrophils that can function detrimentally in a stalled inflammatory phase characteristic of chronic wounds. Electrokinetic fiber surface properties of the biomaterials of this study were determined to correlate material charge and polarity with function relative to thrombin production and elastase sequestration. Human neutrophil elastase sequestration was assessed with an assay representative of chronic wound concentration with cotton gauze cross-linked with three types of polycarboxylic acids and one phosphorylation finish; thrombin production, which was assessed in a plasma-based assay via a fluorogenic peptide substrate, was determined for cotton, cotton-grafted chitosan, chitosan, rayon/polyester, and two kaolin-treated materials including a commercial hemorrhage control dressing (QuickClot Combat Gauze). A correlation in thrombin production to zeta potential was found. Two polycarboxylic acid cross linked and a phosphorylated cotton dressing gave high elastase sequestration.
منابع مشابه
Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings.
The design and preparation of wound dressings that redress the protease imbalance in chronic wounds is an important goal of wound healing and medical materials science. Chronic wounds contain high levels of tissue and cytokine-destroying proteases including matrix metalloprotease and neutrophil elastase. Thus, the lowering of excessive protease levels in the wound environment by wound dressing ...
متن کاملCitrate-Linked Keto- and Aldo-Hexose Monosaccharide Cellulose Conjugates Demonstrate Selective Human Neutrophil Elastase-Lowering Activity in Cotton Dressings
Sequestration of harmful proteases as human neutrophil elastase (HNE) from the chronic wound environment is an important goal of wound dressing design and function. Monosaccharides attached to cellulose conjugates as ester-appended aldohexoses and ketohexoses were prepared on cotton gauze as monosccharide-citrate-cellulose-esters for HNE sequestration. The monosaccharide-cellulose analogs demon...
متن کاملEffects of Neutrophil Elastase
A bstract. The effects of neutrophil elastase on endothelial prostacyclin (PGI2) production, nucleotide release, and responsiveness to vasoactive agents were compared with the effects of cathepsin G (the other major neutral protease of neutrophils), pancreatic elastase, trypsin, chymotrypsin, and thrombin. PGI2 production by pig aortic endothelial cells cultured on microcarrier beads and perfus...
متن کاملHuman Neutrophil Elastase Alters Human a-Thrombin Function: Limited Proteolysis Near the ‘y-Cleavage Site Results in Decreased Fibrinogen
During blood coagulation. polymorphonuclear leukocytes release elastase in amounts that can exceed 100 nmol/L. We therefore studied the interaction between human leukocyte elastase and human a-thrombin. Elastase cleaved the thrombin B chain (Ala 1 50-Asn 1 51 ) near the “y-cleavage site, resulting in two fragments held together by noncovalent interactions. The NH2-terminal fragment (Fl). mol wt...
متن کاملHuman leukocyte cathepsin G and elastase specifically suppress thrombin-induced prostacyclin production in human endothelial cells.
Polymorphonuclear leukocytes (PMN) when activated release products that can potentially injure endothelial cells or alter endothelial function. Exposure of cultured human umbilical vein endothelial cells to cathepsin G and elastase isolated from human PMN at concentrations reached in vivo (100 ng/mL to 10 micrograms/mL) selectively inhibited thrombin-induced prostacyclin production and the thro...
متن کامل